M3749

Modbus implementation description

Revision

Version	Date	Name	Description
V1.00	02.08.2018	IC	Valid from M3749 FW-Version: 1.0.5 Initial revision. Preliminary version
V1.10	04.09.2018	IC	Valid from M3749 FW-Version: 1.0.6 Add MasterSlave registers. Preliminary version
V1.20	3.10.2018	IC	Valid from M3749 FW-Version: 1.0.8 Add alarm polarity registers. Preliminary version
V1.30	26.11.2018	IC	Spelling and layout correction. First release
V1.40	24.07.2019	IC	Valid from M3749 FW-Version: 1.1.0 Add alarm hysteresis registers.

Contents

1	Gener	al Modbus Information	4
	1.1	Documentation of the Modbus protocol	4
	1.2	Modbus testing tool	4
	1.3	Protocol definitions, as implemented in M3749	4
	1.4	Modbus RTU function codes implemented in M3749	4
	1.5	Data representation	
	1.6	Addressing scheme	5
	1.7	Error handling	
	1.8	User levels, Password protection	6
	1.9	Writing registers, data retention	7
2	Impler	nented Modbus registers in the M3749	
	2.1	M3749 Modbus registers	8
3	Detail	ed description of the implemented Modbus registers	
	3.1	Communication Setup Page	14
	3.1.1	User levels and passwords	14
	3.1.2	Modbus register offset	14
	3.1.3	Configuration of the RS485 interface	15

1 General Modbus Information

1.1 Documentation of the Modbus protocol

For detailed information about Modbus specifications, please refer to the following documents:

- Modbus_over_serial_line_V1_02.pdf
- Modbus_Application_Protocol_V1_1b3.pdf

These documents are available on the Modbus website: <u>www.modbus.org</u> Go to tab "Technical Resources".

1.2 Modbus testing tool

On the web, there are plenty of Modbus testing tools or Modbus libraries available for C++, Phyton or other programming languages.

For manually accessing the M3749 over Modbus, for instance to predefine the Modbus address, baud rate, or other items, the tool "Modbus Poll" is a feasible choice. It can be purchased at http://www.modbustools.com

1.3 Protocol definitions, as implemented in M3749

Modbus mode:	RTU
Start bits:	1
Data bits:	8
Stop bits:	1(default), 2
Parity:	None (default), Odd, Even
Baud rate:	4800, 9600, 19200, 38400(default), 57600, 115200
Device address:	1 (default) to 247

1.4 Modbus RTU function codes implemented in M3749

- #3 Read Holding Registers
- #4 Read Input Registers
- #6 Write Single Register
- #16 Write Multiple Registers

For detailed description of these functions please consult the document "Modbus_Application_Protocol_V1_1b3.pdf".

With the M3749, reading any register is performed by either command #3 or #4. There is no difference in handling the information between these two commands.

1.5 Data representation

Each Modbus register contains two bytes, the data length of a command and an answer is always a multiple of two registers.

The high byte (first byte) of a register contains the last digit of a value or string, the first digit of a value or string is found on the low byte (second byte) of the last register of the interesting register chain.

The first byte of a register always contains the higher order bits, the second byte contains the lower order bits.

Decimal values:

Integer Decimal values are translated to hexadecimal numbers. Non-integer decimal values are represented as single precision float values. See below for examples.

For integer 16 bit values:Example:A 16-bit value of 22'354.Converted to hex:5752Register:Value (bytes 1, 2): 0x5752When using Modbus Poll, select "Signed / Unsigned" to correctly interpret values.

For integer 32 bit values:

Example:A 32-bit value of 12'345'678.Converted to hex:BC614EFirst register:Higher bytes of the value (bytes 1, 2): 0x00BCSecond register:Lower bytes of the value (bytes 3, 4): 0x614EWhen using Modbus Poll, select "Long ABCD" to correctly interpret long values.

For float values:

The mantissa of the value is stored on the second register, its exponent in the first register.The float data format is implemented according to IEEE 754, single precision.Example:2.5, converted to a 32-bit float value \rightarrow (Hex value 0x40200000).First register:0x4020Second register:0x0000When using Modbus Poll, select "float ABCD" to correctly interpret float values.

For ASCII-text strings:

Example:	Text sample: "Text". ASCII-code is: 0x54 0x65 0x78 0x74
First register:	0x5465
Second register:	0x7874

1.6 Addressing scheme

The addressing scheme of the M3749 is "Base 0" (first register number is 0).

A register offset is available on register number 0000.

Using this register offset, one can adjust the absolute starting point of the register bank to fit for instance already existing implementations.

The register offset is signed with a range of -32768...32767.

For instance by setting the offset to 1, the sensor is becoming "Base 1".

By default, the register offset is set to 0, thus the first user register is on number 100.

Please note: The register offset is always found on register number 0000, independent of its value. The offset affects only register numbers 0002 and up.

The register numbers given on the following pages are always relative numbers. The absolute number of a register is calculated by adding the register offset to the relative address.

1.7 Error handling

Transmission errors (corrupt telegrams) are detected by the M3749. Corrupt telegrams are discarded and the device is waiting for a next, correct telegram.

Errors on application layer are answered with an error message. In case the answer consists of an error code, the leading bit (0x80) of the function code is set, signaling the error condition. The following error codes are implemented in the M3749:

Error code, hex	Error type
0x00	No error
0x01	Illegal function code was sent to the sensor
0x02	Illegal data address (invalid register number, access denied)
0x03	Illegal data value (value out of range)
0x04	Slave device error (operation not successfully completed)

Error code 0x01 is returned when a function code other than #3, #4, #6, #16 is sent to the M3749.

Error code 0x02 is returned in the following cases:

- Any attempts to undefined registers
- Any attempts to registers on a higher operator level than actually selected (access denied)
- When reading too many registers, so undefined registers would be attempted
- When writing too many or not enough registers at once, or on a wrong starting address

Error code 0x03 is returned when writing invalid data to a register. Invalid data means any value out of the range of the specific register (value below or above limits, value not part of a list of possible values).

In this case, the last valid data is restored on the specific Modbus register and no change is active.

Error code 0x04 is typically returned when trying to log-in to a higher user level with a wrong password or to an inexistent user level. In these cases, the log-in fail, the operation is not successfully completed.

1.8 User levels, Password protection

M3749 have implemented three user levels, level 0, 1 and 2.

Reading registers is possible on any user level, except some specific registers.

To prevent any unwanted configuration changes, most writing attempts are possible only on user level 2.

For all user levels, default passwords are stored in the M3749. These passwords can be changed by the user. Changed passwords are stored in the non-volatile memory of the device.

User level	Code, hex	Default password, hex
0	0x03	0x0000000
1	0x0C	0x01145DEA
2	0x30	0x00F479CE

User levels and default passwords of the M3749:

After each power-up, the device is reset to user level 0.

When trying to change the user level to an invalid level or using a wrong password, the M3749 remains on the last valid user level, error code 0x04 is returned.

1.9 Writing registers, data retention

It is a well-known fact, that FLASH memories only allows about 100'000 write attempts. By exceeding this limit, the FLASH memory might get damaged; resulting in data lost or corrupted data. A device with a damaged FLASH is no longer operable.

Almost all writable registers are write protected. For persistent change of these registers unlock the M3749 EEPROM first. To unlock write 0x5752 to register 3999. Otherwise changed values will be lost after the next power cycle. For non-persistent changes let the EEPROM locked.

Attention!!!

The Modbus Master controller must make sure to write any configuration data only upon change and only during the commissioning phase of a system! Automatic, periodic writes of data during normal operation with unlocked EEPROM must be prohibited!

2 Implemented Modbus registers in the M3749

2.1 M3749 Modbus registers

Except register 0000, all register addresses are relative to the offset stored in register 0000.

Example:

Register offset is 999. Register 200 shall be read.

The controller must read from register 1199. Default Register offset is 0.

Registers sorted in ascending register number order:

Register			Access	levels	Comments
Start- Register	Name	Count	Read	Write	
0000 fix	Register offset	1	0	2 (*)	Starting point of Modbus registers
	Device Information Page				
30	Device type	1	0	-	ulnt 16bit equal to 0x3749
31	Hardware version	1	0	-	ulnt 16bit
32	User end firmware version	8	0	-	String Ex:"1.0.6 "
42	User end firmware version	2	0	-	ulnt 32bit Ex:10006
44	Serial number	1	0	-	ulnt 16bit
46	Calibration date	2	0	F	uInt 32bit 0x00YY'MMDD
48	Slaves available bits	1	0	-	ulnt 16bit bit coded LSB = 1 = Slave#1 available
	USB Logger				
200	Date	2	0	1	uInt 32bit 0x00YY'MMDD
202	Time	1	0	1	uInt 16bit 0xHHMM
210	Log interval	1	0	1	

Register			Access	levels	Comments
Start- Register	Name	Count	Read	Write	
	Alarm Setting Page				
	Alarm settings K1:				
300	Cell voltage lower limit	1	0	1	uInt16bit [10mV]
301	Cell voltage upper limit	1	0	1	uInt16bit [10mV]
302	Battery current lower limit	1	0	1	Int16bit [0.1A]
303	Battery current upper limit	1	0	1	Int16bit [0.1A]
304	Temperature lower limit	1	0	1	Int16bit [0.1°C]
305	Temperature upper limit	1	0	1	Int16bit [0.1°C]
306	Auxiliary input lower limit	1	0	1	ulnt16bit [0.01mA]
307	Auxiliary input upper limit	1	0	1	uInt16bit [0.01mA]
308		1	0	1	
309	Cell Uripple upper limit	1	0	1	uInt16bit [10mV]
310		1	0	1	
311	Cell Iripple upper limit	1	0	1	ulnt16bit [0.1A]
312		1	0	1	
313	Cell impedance upper limit	1	0	1	ulnt16bit [0.1mΩ]
314	Battery voltage lower limit	1	0	1	ulnt16bit [0.1V]
315	Battery voltage upper limit	1	0	1	uInt16bit [0.1V]
316	spare	4	0	1	
320	Alarm settings K2	20	0	1	Same data structure as alarm set 1 from Reg 300-319
340	Alarm settings K3	20	0	1	Same data structure as alarm set 1 from Reg 300-319
360	Alarm K1 enable bits	1	0	1	bUcell:1 (LSB)
361	Alarm K2 enable bits	1	0	1	blbat:1 bPT100:1
362	Alarm K3 enable bits	1	0	1	bAuxInput:1
363	Alarm K1 active	1	0	-	bUrippel:1 bIrippel:1
364	Alarm K2 active	1	0	-	blmpedance:1 bUbat:1
365	Alarm K3 active	1	0	-	reserved:8
366	Relay Status	1	0	-	bK1:1 (LSB) bK2:1 bK3:1 reserved:13
367	Alarm K1 upper/lower indicator	1	0	1	If corresponding active-alarm-bit is
368	Alarm K2 upper/lower indicator	1	0	1	set, this reg indicates a upper limit (1) or lower limit (0) at the given alarm bit position. Same bit coding as Reg 363-365.
369	Alarm K3 upper/lower indicator	1	0	1	
370	Relay K1 setting	1	0	1	bRelInverse:1 (LSB)
371	Relay K2 setting	1	0	1	bLedInverse:1 reserved:14
372	Relay K3 setting	1	0	1	
373	Turn on delay K1	1	0	1	ulnt16 [s]
374	Turn on delay K2	1	0	1	ulnt16 [s]
375	Turn on delay K3	1	0	1	ulnt16 [s]

Register			Access levels		Comments
Start- Register	Name	Count	Read	Write	
	Alarm Setting Page 2				
463	Alarm K1 active of Slave #1	1	0	-	Same data structure as reg
464	Alarm K2 active of Slave #1	1	0	-	363/366 Calculation for Slave #2-#8
465	Alarm K3 active of Slave #1	1	0	-	registers:
466	Relay Status of Slave #1	1	0	-	Base register + Slave Nr. * 100 Base register are
467	Alarm K1 upper/lower indicator of Slave #1	1	0		363/364/365/366/367/368/369
468	Alarm K2 upper/lower indicator of Slave #1	1	0		
469	Alarm K3 upper/lower indicator of Slave #1	1	0		_
	Alarm Setting Page 3				
	Alarm hysteresis settings K1:				
1200	Cell voltage hysteresis	1	0	1	ulnt16bit [10mV]
1202	Battery current hysteresis	1	0	1	Int16bit [0.1A]
1204	Temperature hysteresis	1	0	1	Int16bit [0.1°C]
1206	Auxiliary input hysteresis	1	0	1	ulnt16bit [0.01mA]
1208	Cell Uripple hysteresis	1	0	1	ulnt16bit [10mV]
1210	Cell Iripple hysteresis	1	0	1	ulnt16bit [0.1A]
1212	Cell impedance hysteresis	1	0	1	ulnt16bit [0.1mΩ]
1214	Battery voltage hysteresis	1	0	1	ulnt16bit [0.1V]
1216	spare	4	0	1	
1220	Alarm hysteresis settings K2	10	0	1	Same data structure as alarm hysteresis set 1 from Reg 1200- 1219
1240	Alarm hysteresis settings K3	10	0	1	Same data structure as alarm hysteresis set 1 from Reg 1200 1219

Register			Access	levels	Comments
Start- Register	Name	Count	Read	Write	
	Modbus Master/Slave Cascade Setup Page				
3000	Multimode enable bit	1	0	2	0 = Multimode disabled 1 = Multimode enabled
3001	Master/Slave selection bit	1	0	2	0 = Device is master 1 = Device is slave
3002	Slave #1 device address	1	0	2	uChar 8bit
3003	Slave #2 device address	1	0	2	0 = Slave disabled 1247= Slave device address
3004	Slave #3 device address	1	0	2	
3005	Slave #4 device address	1	0	2	If the device is configured as a slave only reg 3010 as slave
3006	Slave #5 device address	1	0	2	device address used. For master mode reg 3010-3017 used for up
3007	Slave #6 device address	1	0	2	to 8 slave devices. Each slave
3008	Slave #7 device address	1	0	2	address must be different from each other.
3009	Slave #8 device address	1	0	2	
	Modbus Slave Setup Page				
3096	Device address	2	0	2 (*)	
3098	Address limit minimum	2	0	-	
3100	Address limit maximum	2	0	-	
3102	Baud rate	2	0	2 (*)	
3104	Baud rate limit minimum	2	0	-	
3106	Baud rate limit maximum	2	0	-	
3108	Uart modus modbus	1	0	2 (*)	
3288	User level	4	0	0	
3292	User level passwords	4	-	2 (*)	
3998	Reboot device	1		2	Rebootcode = 0xC5C5
3998	Unlock M3749 EEPROM	1	-	0	Unlockcode = 0x5752

Register			Access levels		Comments
Start- Register	Name	Count	Read	Write	
	Statistic Control Page				
4000	Clear statistic of battery & cell monitoring	1	-	1	uChar8 1= Reset
4002	Date since last reset	2	0	-	uInt 32bit 0x00YY'MMDD***
4004	Time since last reset	1	0	-	uInt 16bit 0xHHMM***
	Battery Monitoring Page				
4100	Battery I	2	0	-	Float 32bit
4102	Battery I avg	2	0	-	Float 32bit
4104	Battery I min	2	0	-	Float 32bit
4106	Battery I max	2	0	-	Float 32bit
4108	Battery Iripple	2	0	-	Float 32bit
4110	Battery Iripple _{avg}	2	0	-	Float 32bit
4112	Battery Iripple _{min}	2	0	-	Float 32bit
4114	Battery Iripple _{max}	2	0	-	Float 32bit
4116	Temperature	2	0	-	Float 32bit
4118	Temperature _{avg}	2	0	-	Float 32bit
4120	Temperaturemin	2	0	-	Float 32bit
4122	Temperature _{max}	2	0	-	Float 32bit
4124	Auxiliary input Aux	2	0	-	Float 32bit
4126	Auxiliary input Aux _{avg}	2	0	-	Float 32bit
4128	Auxiliary input Aux _{min}	2	0	-	Float 32bit
4130	Auxiliary input Aux _{max}	2	0	-	Float 32bit
4132	Battery I of Slave #1	2	0	-	Float 32bit
4140	Battery Iripple of Slave #1	2	0		Calculation for Slave #2-#8
4148	Temperatur of Slave #1	2	0		Base register + Slave Nr. * 32
4156	Auxiliary input Aux of Slave #1	2	0		Base register are 4100/4108/4116/4124
	Battery Monitoring Page 2				
4390	Number of connected cells	1	0		ulnt 16bit
4392	Battery voltage	2	0		Float 32bit
4394	Cell average voltage	2	0		Float 32bit
4396	Cell connected summary	4	0		uInt 64bit Bit coded cell connected flag
4400	Battery impedance	2	0		Float 32bit
4402	Battery Monitoring Page 2 of Slave #1 - #8	96	0		Same data structure as reg 4390- 4400

Register			Access	levels	Comments
Start- Register	Name	Count	Read	Write	
	Cell Summary Monitoring Page				
4500	Cell U #01 - #60	120	0		60 x Float 32bit
4620	Cell U #61 - #540	960	0		480 x Float 32bit
5580	Cell Uripple #01 - #60	120	0		60 x Float 32bit
5700	Cell Uripple #60-540	960	0		480 x Float 32bit
6660	Cell Z #01 - #60	120	0		60 x Float 32bit
6780	Cell Z #60-540	960	0		480 x Float 32bit
	Cell Detailed Monitoring Page				
8000	Cell connected flag	1	0		uChar 8bit
8002	Cell U	2	0	-	Float 32bit
8004	Cell Uavg	2	0	-	Float 32bit
8006	Cell U _{min}	2	0	-	Float 32bit
8008	Cell U _{max}	2	0	-	Float 32bit
8010	Cell Uripple	2	0	-	Float 32bit
8012	Cell Urippleavg	2	0	-	Float 32bit
8014	Cell Uripplemin	2	0	-	Float 32bit
8016	Cell Uripple _{max}	2	0	-	Float 32bit
8018	Cell Z	2	0	-	Float 32bit
8020	Cell Z _{avg}	2	0	-	Float 32bit
8022	Cell Z _{min}	2	0	-	Float 32bit
8024	Cell Z _{max}	2	0	-	Float 32bit
8030	Next cell data	30	0		**
8060	Next cell data	30	0		**
9770	Last cell #60	30	0		**

** Same data structure as Cell1 from Reg8000-8029 *** Power up device will also reset the statistic values

(*) For persistent change of these registers unlock the M3749 EEPROM first. To unlock write 0x5752 to register 3999. Otherwise changed values will be lost after the next power cycle. (**) EEPROM must be unlocked. Write 0x5752 to register 3999 to unlock the EEPROM.

Note: An unlocked EEPROM becomes automatically locked after 2 minutes.

3 Detailed description of the implemented Modbus registers

Almost all writable registers are write protected. For persistent change of these registers unlock the M3749 EEPROM first. To unlock write 0x5752 to register 3999. Otherwise changed values will be lost after the next power cycle.

Note: An unlocked EEPROM becomes automatically locked after 2 minutes.

3.1 Communication Setup Page

3.1.1 User levels and passwords

After power-up, the M3749 is set to user level 0. User levels 1 or 2 can be selected by logging in with password. The password of each access level can be changed by the user.

Set user level

To change or check the user level, write or read relative register number 3288:

Register		Register usage		Access user level	
Start	Count	Register 1 / 2	Register 3 / 4	Read	Write
3288	4	User level code	Password	0	0
Example		0x0000, 0x0030	0x00F4, 0x79CE		

The selected user level stays active until next power-down of the sensor. After power-up, user level 0 is active. Invalid login trials are discarded and user level 0 is activated.

Change passwords for user levels

To change the password of a user level, write relative register number 3292:

Register		Register usage		Access user level	
Start	Count	Register 1 / 2	Register 3 / 4	Read	Write
3292	4	User level code (hex)	Password (hex)	-	2
Example		0x0000, 0x0030	0x1905, 0x0202		

Invalid user level settings are discarded and no password will be changed. Checking the valid passwords is performed by reading the user level.

3.1.2 Modbus register offset

By default, the Modbus register offset is defined to 0. If necessary, this offset can be changed to any number in the range of -32768...32767.

To change or check the Modbus register offset, write or read absolute register number 0000:

Register		Register usage	Access user level	
Start	Count	Register 1 Re		Write
0000	1	Modbus register offset (signed integer)		2
Examp	le	999 (hex-value on register #0: 0x03E7)		

3.1.3 Configuration of the RS485 interface

The factory settings of the RS485 interface are mentioned in chapter "Protocol definitions". The device address, as well as the baud rate and the UART Mode can be adjusted to fit the needs of your installation. Please verify the new settings by reading them back before powering the unit off. After the next power cycle, the settings will be in effect and if wrong, no further communication will be possible.

Device address

By default, the device address is set to 1. By reading relative register 3098 and 3100, the valid address range can be evaluated. The device address can be changed to any number within this range by writing register 3096:

Register		Register usage		Access user level	
Start	Count	Register 1 / 2		Read	Write
3096	2	Device address (unsigned int)		0	2
3098	2	Min. Address (unsigned int)		0	-
3100	2	Max. Address (unsigned int)		0	-

Baudrate

By default, the baudrate is set to 38400. Relative register 3104 and 3106 reports the baudrate limits. The baudrate can be changed to any number within this range by writing register 3102:

Register		Register usage		Access user level	
Start	Count	Register 1 / 2		Read	Write
3102	2	Baudrate code (unsigned int)		0	2
3104	2	Min. Baudrate code (unsigned int)		0	-
3106	2	Max. Baudrate code (unsigned int)		0	-

The Baudrate is represented as a decimal code:

Baudrate	4800	9600	19200	38400	57600	115200
Code	2	3	4	5	6	7

Mode

By default, the Mode is set to 8bit data, no parity, 1 stop bit (8,None,1).

Register		Register usage		Access user level	
Start	Count	Register 1		Read	Write
3108	1	UART Mode		0	2

Possible Values:

0x0000	0x0001	0x0002	0x0003	0x0004	0x0005
8,None,1	8,None,2	8,Even,1	8,Even,2	8,Odd,1	8,Odd,2